1006ви1 генератор с регулировкой частоты и скважности

awwwa › Блог › Генератор прямоугольных импульсов для промывки форсунок на микросхеме NE555.

•D1,2,3 – диоды 1N4007. Как достаточно распространенные.
•C1,3,4 – конденсаторы керамические 50В. С4 можно поставить электролитический 2,2мкФх25В. Необходимо соблюсти полярность. Конденсаторы можно ставить и с бОльшим напряжением.
•С2 — конденсатор электролитический. При маленькой его емкости питание микросхемы может быть нестабильным, а отсюда и сбои в работе.
•Постоянные резисторы все 0,25 Вт. R1 не менее 1k. Для остальных можно взять и ближайшее значение. R5 просто 20 Ом, а не кОм.
•R3,4 — переменные резисторы. Желательно с линейной характеристикой. На схеме показаны 16К1-В10К и 16К1-В500К.
С платы резисторы вынес специально, потому что это дает возможность подобрать их в других корпусах, да и расположить в какой-нибудь коробке будет проще.
Если не оказалось с номиналом 10к, то можно ставить 5к или 20к. В первом случае время открытого состояния форсунки уменьшится примерно в два раза и, если его окажется мало для полного открытия форсунки, то надо будет увеличить номинал резистора R1. Во втором случае время открытого состояния форсунки увеличится примерно в два раза, и здесь мы выходим из рабочего диапазона форсунки. Это надо будет помнить и не выводить R3 больше чем наполовину.
Если не оказалось с номиналом 500к, то можно ставить 200к или 1М. В первом случае минимальная частота будет примерно 3 Гц и будет зря повышенный расход промывающей жидкости. Во втором случае на минимальной частоте схема может работать неустойчиво, но это не страшно, потому что достаточно R4 не выводить больше чем наполовину.
•Транзистор IRF3710 или IRF3710Z в корпусе ТО220. N-канал, Uси 100В, Iси max 57A. Можно попробовать и с другим Iси. При сильном нагреве установить радиатор. У транзисторов других производителей назначения выводов могут не совпадать.
•NE555 – микросхема-таймер в корпусе DIP-8. Можно попробовать отечественную КР1006ВИ1.
•Панелька SCS-8 под микросхему.

Для режима «Кавитация» необходимо частоту увеличить до 400Гц. Для этого С4 ставим 0,22 мкФ, а R4 скручиваем по часовой в крайнее положение.

Регулировка скважности – регулировка времени открытого состояния форсунок. При данных значениях R1, R3 и С4 время будет лежать в рабочем диапазоне форсунок и будет примерно 1,5-20 млСек. При изменении скважности частота будет оставаться неизменной.

Регулировка частоты при данных значениях С4, R4, R2, R3 будет примерно 1-50Гц, что соответствует 120-6000 об/мин двигателя. Форсунка срабатывает 1 раз/сек (1Гц), если коленвал вращается со скоростью 2об/сек, что соответствует 120об/мин. При изменении частоты время открытого состояния форсунок будет оставаться неизменным.

Можно сделать и без регулировок, но тогда автолюбитель лишится возможности что-нибудь покрутить и будет ему постоянно казаться, что быстро или медленно. Интересно было наблюдать, как взрослый дядька 1м 90 ростом, сидя на корточках, в одной руке держал переноску и подсвечивал с обратной стороны колбы, а другой постоянно менял регулировки. И так полчаса.

Источник

Радиоконструктору

Мультивибраторы на на таймере КР1006ВИ1(NE555)

В современной аппаратуре широко применяют генераторы прямоугольных импульсов, выполненные на таймерах. При простоте схемы они обладают весьма высокими эксплуатационными характеристиками. Стабильность частоты генерации обеспечена принципом действия микросхемы.

Так как образцовое напряжение на оба компаратора DA1 и DA2 (рис. 2.36) задают внутренние делители напряжения R1—R3, пороги срабатывания компараторов сдвигаются пропорционально изменению питающего напряжения, и напряжение, заряжающее конденсатор С1, меняется в той же пропорции, компенсируя погрешность. Уход частоты генератора при изменении напряжения питания на 1 В не превышает 0,1%.

В литературе описано много генераторов на таймерах. Схема простейшего из них изображена на рис. 5.39, а. За счет объединения обоих управляющих входов — выводы 2 и 6 — микросхема работает как триггер Шмитта. Времязадающая RC-цепь состоит из одного резистора (R1) и одного конденсатора (С1) и может быть легко приспособлена для перекрытия диапазона частот.

В момент подачи напряжения питания на входе таймера будет напряжение низкого уровня, на выходе — высокого. Конденсатор С1 начинает заряжаться. Как только напряжение на конденсаторе достигнет значения 2/3 Uп сработает компаратор DA1. Он переключит внутренний триггер, и уровень выходного напряжения сменится на низкий. Конденсатор С1 начнет разряжаться. Когда напряжение на входе микросхемы снизится до 1/3 Uп, компаратор DA2 вызовет обратное переключение триггера и начнется новый цикл работы. В установившемся режиме генерации напряжение на конденсаторе колеблется в пределах от 1/3 Uп до 2/3 Uп (рис. 5.39,б),

Читайте также:  Регулировка сварочного тока по первичке схемы

Таймер КР1006ВИ1 устойчиво генерирует вплоть до частоты 1 МГц. Выходное напряжение, заряжающее конденсатор С1, немного меньше напряжения питания: U 1 вых=Uп—Uкэ, где Uкэ — падение напряжения на выходном биполярном транзисторе таймера. Это — недостаток рассмотренного варианта генератора. Вычитаемое напряжение Uкэ = 0,6. 0,9 В служит причиной неравенства длительности стадий зарядки и разрядки, а также нестабильности частоты.

Включением дополнительного резистора R2 сопротивлением 1. 2 кОм разность Uп—U 1 вых можно уменьшить, улучшив тем самым параметры генератора. Скважность становится практически равной 2, а уход частоты при изменении питания от 5 до 12 В (без нагрузки) менее 0,1%. Однако резистор R2 дополнительно нагружает источник питания при U 0 вых.

Период колебаний можно определить, приняв U 1 вых ≈Uп; U 0 вых ≈0В,

следовательно, период колебаний

Вариант генератора на рис. 5.39, в работает подобно рассмотренному с тем лишь отличием, что зарядка конденсатора происходит, когда выходное напряжение имеет низкий уровень, и разрядка — высокий.

На частоту этих генераторов влияет сопротивление нагрузки, что является существенным их недостатком. Так, при напряжении питания Uп= 12 В (R2=1 кОм, см. рис. 5.39, а) изменение нагрузки в пределах от 10 до 1 кОм вызывает уход частоты на 2,5%.

На практике чаще употребляют генератор по схеме рис. 5.40, а свободный от этого недостатка. Здесь резистор R3 и выключатель SA1 служат для прерывания колебаний. При замкнутых контактах генерация прекращается. Если прерывания не требуется, эту цепь исключают, а вывод 4 таймера соединяют с плюсовым проводом питания, как обычно.

Зарядный ток конденсатора С1 протекает через резисторы R1 и R2. У транзистора VT1 таймера (см. рис. 2.36) коллектор соединен с выводом 7, поэтому транзистор в это время закрыт. Выходное напряжение имеет

Рис. 5.40. Мультивибратор на таймере КР1006ВИ1 с улучшенными параметрами:а — принципиальная схема; б — схема мультивибратора, позволяющая изменять скважность выходных сигналов

высокий уровень. После достижения на конденсаторе С1 напряжения 2/3 Un произойдет переключение внутреннего триггера, одновременно с переключением выходных транзисторов таймера откроется и транзистор VT1 и начнется разрядка конденсатора.

Разрядный ток течет через резистор R2 и выходной транзистор VT1. Так как на выводе 7 таймера напряжение практически равно нулю, подзарядки конденсатора не происходит. Когда напряжение на конденсаторе С1 уменьшится до 1/3 Un, произойдет очередное переключение, транзистор VT1 закроется и начнется новый цикл работы. В этом генераторе хронирующая цепь и выход таймера не связаны между собой. Для возникновения самовозбуждения следует обеспечить сопротивление R2 ≥ 3 кОм.

Временные диаграммы работы генератора такие же, как и у предыдущего.

Время зарядки конденсатора С1

(5.19)

tp = 0,693R2C1 ≈ 0,7R2C1. (5.20)

Период колебаний, таким образом,

T=tз+tр = 0,7(R1+ 2R2) С1, (5.21)

а частота колебаний

f = 1/T= 1,44/ [ (R1 + 2R2) С1 ]. (5.22)

Важно отметить, что напряжение питания не входит в эти формулы, т. е. не влияет на частоту генерирования.

Так как R1 + R2>R2, длительность зарядки t1 (в течение которой Uвых имеет высокий уровень) всегда превышает длительность t2. Скважность выходного напряжения

Если желательно иметь симметричный выходной сигнал, следует параллельно резистору R включить диод VD1, выведя тем самым резистор R2 из цепи зарядки конденсатора. Еще один диод — VD2, включенный последовательно с резистором R2 (рис. 5.40,б), создает равные условия для разрядки, в результате чего отношение t1/t2 становится эквивалентным отношению R1/R2. Хронирующая цепь с диодами позволяет регулировать скважность в широких пределах.

Когда требования к симметрии выходных сигналов не очень высоки, можно ограничиться только одним диодом VD1.

Рис. 5.41. Схема мультивибраторов на таймере КР1006ВИ1, обеспечивающая выходные импульсы со скважностью Q = 2

Выходное напряжение строго симметричной формы со скважностью 2 можно получить, добавив последовательно с резистором RC-цепи полевой транзистор VT1 (рис. 5.41). Сопротивление этого транзистора в открытом состоянии должно быть, по меньшей мере, в сто раз меньше сопротивления зарядного резистора R1, если необходимо обеспечить ошибку в симметрии менее 1 %.

Когда выходное напряжение имеет высокий уровень, транзистор VT1 открыт и конденсатор С1 заряжается. Когда напряжение на конденсаторе достигнет 2/3 Un, сработает компаратор DA1 и напряжение на выходе упадет до низкого уровня. В этот момент полевой транзистор VT1 закроется, отключая RC-цепь от источника питания, а внутренний транзистор VT1 таймера (рис. 2.36) откроется, разряжая конденсатор. Когда напряжение на входах компараторов снизится до 1/3 Un, произойдет новое переключение и описанный процесс будет повторяться. Поскольку при разрядке конденсатора RC-цепь отключена от источника питания, продолжительность циклов зарядки и разрядки одинакова. Строгая симметричность выходных импульсов такого генератора зависит от точности, с которой подобраны сопротивления резисторов внутреннего делителя, создающего образцовые напряжения для компараторов. Оптимальное напряжение питания для генератора по схеме на рис. 5.41—от 12 до 15 В. При меньшем напряжении параметры транзистора VT1 сильнее сказываются на качестве работы. Частота генерации fген = 0,72/ (R1С1).

Читайте также:  Регулировка тросика стеклоподъемника ваз 2107

После включения питания, когда напряжение на конденсаторе С1 равно нулю, первый интервял выходного напряжения длится дольше, чем последующие в установившемся режиме. Продолжительность его равна t= 1,1 (R1 + R2)C1.

Частотную модуляцию колебаний можно реализовать, подавая модулирующее напряжение на вывод 5 таймера, на котором действует образцовое напряжение компаратора DAI, Uобр = 2/3Un (рис. 5.42). При изменении образцового напряжения для обеспечения срабатывания компаратора напряжение на другом его входе — выводе 6 — должно измениться таким же образом. Поскольку напряжение на выводе 6 определяется временем зарядки и разрядки конденсатора С1, длительность интервалов tI и t2 будет

Рис. 5.42. Способ частотной модуляции колебаний мультивибратора на таймере КР1006ВИ1 (а) и его временные диаграммы (б)

меняться пропорционально модулирующему напряжению (рис. 5.42,б). Для успешной работы необходимо соблюдать условие fген >> fмод

Источник

2.3. Как конструировать устройства на микросхеме КР1006ВИ1

2.3. Как конструировать устройства на микросхеме КР1006ВИ1

В радиолюбительской литературе много написано о задающих генераторах, их модернизации и улучшении характеристик. Таймеры серии 555 (отечественный аналог КР1006ВИ1) известны многим радиолюбителям. Учитывая их популярность, позже были выпущены 2-канальный (NE556/SA556/SE556) и 4-канальный (NE558/ SA558/SE558) варианты. Выпускаемые в корпусах DIP-14 и SO-14 микросхемы серии 556 представляют собой два идентичных таймера типа 555. Работоспособность микросхем 556 сохраняется при напряжении питания в диапазоне 4,5-18 В, максимальный выходной ток – 200 мА на канал.

Микросхемы серии 558 выпускаются в корпусах DIP-16. Работоспособность микросхем 556 сохраняется в диапазоне напряжения питания 4,5-18 В, максимальный выходной ток каждого канала – 100 мА.

Используя микросхему таймера, можно построить множество схем различных устройств. Например, устройство регулировки скважности импульсов. Изменяя разницу потенциалов между объединенными выводами 2,6 и 7 таймера DA1, можно получить практически линейную зависимость изменения частоты следования импульсов от изменения напряжения на входах этой микросхемы.

На основе этой идеи предлагаю вниманию читателей простой задающий генератор с возможностью регулирования параметров выходных импульсов в широких пределах, то есть генератор универсального назначения, который при небольшой доработке выходного каскада (об этом рассказано ниже) может эффективно использоваться как высокочастотный преобразователь напряжения.

Задающий генератор для различных электронных устройств удобно реализовать на широко распространенной микросхеме-таймере КР1006ВИ1 (зарубежный аналог LM555) или на других ИМС в соответствии с информацией в начале главы.

На рисунке 2.14 приведена электрическая схема такого генератора.

Рис. 2.14. Электрическая схема генератора на КР1006ВИ1

Рассмотрим ее подробнее. Микросхема DA1 включена по классической схеме. Времязадающие резисторы R2 и R3 своими сопротивлениями определяют параметры импульсов генератора и его частоту в широких пределах. Причем сопротивление резистора R2 определяет частоту, а R3 – соответственно ширину импульсов генератора. радиолюбительских конструкций вполне достаточно. Однако для управления более мощной нагрузкой необходим усилитель тока выходного каскада, электрическая схема которого представлена на рисунке 2.15.

Рис. 2.15. Электрическая схема усилителя тока

Кроме удобства регулировки параметров выходных импульсов генератора такое устройство можно применять универсально, в любых электронных узлах и «самоделках», где требуется задающий генератор с периодом длительности выходных импульсов 10-100 мкс, а следования – в диапазоне 50-100 мкс. Эти параметры также зависят и от емкости конденсатора С1.

Оксидный конденсатор С3 сглаживает пульсации напряжения от источника питания. Если вместо источника питания применяют батареи или аккумулятор, этот конденсатор можно исключить из схемы.

В налаживании устройство не нуждается и начинает работать сразу после подачи питания.

Устройство испытывалось с напряжением источника питания в диапазоне 6-15 В. В этой части следует учитывать, что амплитуда выходных импульсов задающего генератора пропорциональна напряжению источника питания.

Переменные резисторы – R2, R3 с линейной характеристикой изменения сопротивления, многооборотные – СП5-1ВБ.

Выходной ток генератора на микросхеме КР1006ВИ1 (вывод 3 DA1) не превышает 200 мА, этого для многих

Здесь наиболее оптимальным решением является применение мощного полевого транзистора, не имеющего тока утечки и требующего малого управляющего напряжения (в отличие от биполярных транзисторов).

Полевой транзистор в данном электронном узле может быть заменен на КП743 с любым буквенным индексом, IRF510, BUZ21L, SPP21N10 и их аналоги.

Резистор R5 в данной схеме представляет эквивалент нагрузки, которой могут быть спираль нагревательного прибора, лампа накаливания и тому подобные устройства. В другом возможном варианте выходное напряжение снимают с резистора R5 и подают на последующие каскады.

Читайте также:  Регулировка однодискового сцепления ямз 236 видео

Для преобразователей и умножителей напряжения лучше подходит выходной каскад на полевом транзисторе, электрическая схема которого представлена на рисунке 2.16.

В цепи нагрузки полевого транзистора включена обмотка повышающего трансформатора Т1. Выходное напряжение преобразователя снимается с вторичной обмотки Т1 и может быть использовано для управления высоковольтными устройствами нагрузки. Для дополнительной защиты выходного каскада в схеме с трансформатором применен сапрессор (так называют защитный стабилитрон), например, из серии КС515 с любым буквенным индексом.

Рис. 2.16. Электрическая схема с преобразованием напряжения

Рис. 2.17. Электрическая схема законченного устройства управления частотой вращения электродвигателя

Применение сапрессора связано с источником питания так, что защитный стабилитрон должен иметь напряжение стабилизации не менее s U n.

Практическое применение генератор (собранный по схеме с дополнительным каскадом, представленным на рис. 2.16) находит в устройствах ЭПРА (электронных пускорегулирующих аппаратов), управляющих лампами дневного света, преобразователей напряжения, в охранных и других устройствах бытового предназначения.

На рисунке 2.17 представлена электрическая схема законченного устройства управления частотой вращения электродвигателя, построенная по тому же принципу, что и рассмотренная выше «классическая» схема, изображенная на рисунке 2.15.

Задающий генератор работает на частоте 500 Гц. Длительность импульсов, а значит, и частоту вращения двигателя М1 можно регулировать в широких пределах. Выход генератора через усилитель тока на транзисторе VT1 управляет коллекторным электродвигателем М1 типа ДВ-902 с помощью широтномодулированных импульсов.

Частота вращения двигателя M1 регулируется изменением сопротивления переменного резистора R2. Когда его сопротивление (в точке контакта движка переменного резистора) максимально, разряд конденсатора С1 через резистор R3 и вывод 7 микросхемы DA1 происходит быстрее, чем его заряд. Поэтому на выходе 3 DA1 большую часть времени высокий уровень (частота переключения около 50 Гц), транзистор VT1 закрыт, и напряжение питания на нагрузку не подается.

При уменьшении сопротивления R2 скорость заряда С1 растет, частота переключения на выходе DA1 возрастает, и на нагрузку поступает примерно половина от максимального напряжения (двигатель работает в половину своей мощности). При дальнейшем уменьшении сопротивления R2 на выходе микросхемы большую часть времени низкий уровень, транзистор открыт, на нагрузку поступает еще большая мощность, т. е. частота вращения двигателя увеличивается.

Мощный диод VD3 гасит импульсы самоиндукции обмотки двигателя М1, которые при отсутствии этого диода могут достигать десятков вольт. Чтобы обеспечить минимальное переходное сопротивление ползунка переменного резистора R2, именно в этой схеме лучше всего использовать сдвоенный переменный резистор.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

1.2.3. Варианты применения устройства

1.2.3. Варианты применения устройства Второй вариант применения – выявление мест локального проникновения холодного воздуха через рамы и окна (см. рис. 1.11). Рис. 1.11. Иллюстрация работы прибора по выявлению мест проникновения холодного воздуха через неплотности рам и окон

1.3.2. Практика применения устройства

1.3.2. Практика применения устройства В пылесосе индикаторная лампа установлена на корпусе. При переносе датчика пыли в корпус вытяжки Bright (или аналогичной) лампу также выводят на переднюю панель – для визуального контроля загрязненности внутренних фильтров.Куда в

Глава 2 Устройства на микросхемах

Глава 2 Устройства на микросхемах Для изготовления устройств на микросхемах кроме паяльника потребуются простые приборы для настройки и контроля работы схем: тестер и желательно

2.1.1. Как сделать необычным управление «обычным» таймером на микросхеме КР1006ВИ1

2.1.1. Как сделать необычным управление «обычным» таймером на микросхеме КР1006ВИ1 С появлением мигающих светодиодов в радиотехнике произошла микрореволюция. Применение мигающих светодиодов – сегодня уже достаточно распространенное явление, и, пожалуй, разве что ленивый

2.5.1. Принцип действия устройства

2.5.1. Принцип действия устройства Принцип действия устройства прост. Когда световой поток, излучаемый светодиодом HL1, отражается от объекта и попадает на фотоприемник, электронный узел, реализованный на 2 микросхемах – компараторе КР1401СА1 и таймере КР1006ВИ1, вырабатывает

3.5.1. Практика применения устройства

3.5.1. Практика применения устройства Устройство «Скорпион PS TG-120A-Pro» как подавитель сотовой связи уместно применять в помещениях малого и среднего размера, где использование сотовых телефонов нежелательно, или для обеспечения рабочей обстановки во время проведения

Особенности устройства сауны

Особенности устройства сауны Если по каким-либо причинам вы не можете или не хотите заниматься строительством бани, не забывайте, что существует более дешевая и простая альтернатива – сауна. В отличие от бани, она не занимает много места. Распространено мнение, что сауна

Детские радиосигнальные и радиопереговорные устройства, а также устройства радиоконтроля за ребенком

Детские радиосигнальные и радиопереговорные устройства, а также устройства радиоконтроля за ребенком Работают в полосе радиочастот 38,7-39,23 МГц и 40,66–40,7 МГц с мощностью излучения передающих устройств до 10 мВт включительно, а также в полосе радиочастот 863, 933–864,045 МГц с

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Настройки и регулировки