Автоматическая регулировка усиления сигналов

Принцип автоматической регулировки усиления в приемниках (АРУ).

Напряжение входного сигнала приёмника может изменяться в очень больших пределах на 40…80 дБ (10 2 …10 4 раз), что вызывает изменение уровня, а, следовательно, и мощности сигнала на выходе приёмника. Для защиты оконечных устройств от перегрузки необходимо регулировать усиление приёмника в таких же пределах. Ручная регулировка усиления позволяет обеспечить нормальную работу приёмника только при очень медленных изменениях уровня входного сигнала, например, при перестройке с одной радиостанции на другую, да и то – сопряжена с эксплуатационными неудобствами. При больших скоростях изменения уровня входного сигнала, например при быстрых замираниях радиоволн, необходимо использовать автоматическую регулировку усиления (АРУ).

Таким образом, АРУ должна обеспечить относительное постоянство напряжения сигнала на выходе детектора и приёмника при изменении напряжения сигнала на входе РПУ.

Рассмотрим наиболее часто применяемую инерционную систему АРУ непрерывного действия с обратным регулированием (за счёт обратной связи по постоянному току) (Рис.2).

Рис.2 Структурная схема АРУ.

Приведённая на Рис.2 схема АРУ обеспечивает уменьшения усиления УРЧ и УПЧ при увеличении уровня входного сигнала UВХ и, наоборот, увеличение усиления при снижении уровня сигнала. Регулировка осуществляется за счёт отбора энергии полезного сигнала UС и преобразования его в постоянное регулирующее напряжение UРЕГ, изменяющееся пропорционально амплитуде входного сигнала UВХ. Этим напряжением регулируется усиление каскадов УРЧ и некоторых каскадов УПЧ так, чтобы уровень выходного напряжения UВЫХ практически не изменялся.

Сигнал промежуточной частоты UС = UПР с выхода УПЧ детектируется амплитудным детектором АРУ (АДАРУ) и фильтруется в ФНЧ с постоянной времени tФНЧ = 0,1…0,3 сек.

Большее значение tФНЧ > 0,3 сек приведёт к недопустимому увеличению инерционности системы АРУ, что будет заметно на слух при резком изменении уровня входного сигнала.

Меньшее значение tФНЧ

Регулировка усиления каскадов может осуществляться различными способами:

— изменением крутизны характеристики усилительных элементов (КU = S RН);

— изменением сопротивления нагрузки усилительных элементов (КU = S RН);

— изменением напряжения питания усилительных элементов (КU

Два последних способа менее эффективны, так как пределы регулировки усиления не превышают 2…4 раза на один каскад. Регулировка за счёт изменения режима работы транзистора по базовой цепи (изменением крутизны входной динамической характеристики) позволяет изменять усиление каскада в 8…10 раз.

Для этой цели разработаны специальные транзисторы с переменной крутизной, в которых растянутый начальный участок входной динамической характеристики позволяет плавно и в широких пределах изменять её крутизну (Рис.3). К таким транзисторам можно отнести ГТ328, ГТ346, КТ3127, КП307 и много других.

На Рис.3 видно, что при увеличении начального базового смещения U’ > U рабочая точка перемещается на участок с большей крутизной входной динамической характеристики. При этом амплитуда базового тока увеличивается I’Бm > IБm за счёт увеличения усиления транзистора.

Изменение U происходит автоматически по системе АРУ при помощи регулирующего напряжения UРЕГ.

Рис.3 Пояснение принципа регулировки усиления транзистора изменением напряжения базового смещения U.

Читайте также:  Регулировка рулевого механизма с гидроусилителем уаз

При выборе каскадов для регулировки усиления в системе АРУ необходимо учитывать следующее:

1. Амплитуда усиливаемого сигнала должна быть малой, чтобы использование нелинейных участков характеристик транзисторов не привело к появлению нелинейных искажений. С этой точки зрения пригодны все каскады УРЧ и первые каскады УПЧ.

2. Нельзя использовать в качестве регулируемых узкополосные полосовые усилители с нагрузкой в виде ФСС или пьезофильтров. Значительное изменение режимов работы транзисторов может привести к изменению межэлектродных ёмкостей транзистора, а следовательно к расстройке избирательной системы.

3. Нельзя регулировать усиление в смесительных каскада преобразователей частоты, так как при этом нарушается оптимальный режим их работы.

На Рис.4 приведены амплитудные характеристики приёмника для различных типов АРУ.

Если в приёмнике отсутствует АРУ, то зависимость амплитуды выходного напряжения от амплитуды входного UВЫХ = ƒ(UВХ) соответствует кривой 1. При слабых сигналах она линейна, а при сильных в последних каскадах приёмника наступает перегрузка и усиление приёмника уменьшается, что приводит к появлению искажений.

При наличии простой АРУ (кривая 2) регулирующее напряжение создаётся и используется при любых амплитудах входного сигнала. Недостатком простой АРУ является то, что усиление приёмника снижается не только для сильных сигналов, но и для самых слабых (хотя и в меньшей степени), для приёма которых необходимо использовать полное усиление приёмника.

Рис.4 Амплитудные харктеристики приёмника. 1 – без АРУ; 2 – с простой АРУ; 3 – при задержанной АРУ; 4 – при задержанной и усиленной АРУ.

Этот недостаток устраняется в задержанной АРУ (кривая 3), где регулирование начинается тогда, когда напряжение на входе приёмника достигнет определённого уровня. Подобный режим можно получить, если подать на диод детектора АРУ некоторое запирающее напряжение, называемое напряжением задержки UЗАД. Его обычно выбирают равным амплитуде напряжения на входе детектора, которое соответствуюет номинальной чувствительности приёмника UЗАД = UВХ.МИН. Таким образом при увеличении уровня сигнала от 0 до UВХ.МИН система АРУ не действует и увеличение выходного напряжения происходит по кривой 1. После того как уровень сигнала превысит UЗАД, начинает действовать АРУ и выходное напряжение будет изменяться далее по кривой 3. Для регулирования усиления в высокочувствительных каскадах УРЧ применение АРУ с задержкой обязательно.

Для улучшения стабилизирующего действия системы АРУ в её шину вводят дополнительные усилители постоянного тока УПТ. Такая АРУ называется задержанной и усиленной (кривая 4).

Эффективность АРУ характеризуется следующими показателями:

— величиной изменения входного напряжения Д= UВХ.МАХUВХ.МИН;

— допустимой величиной изменения выходного напряжения В = UВЫХ.МАХUВЫХ.МИН;

— величиной изменения коэффициента усиления системой АРУ: Д ⁄ В (раз).

Для приёмников высшей группы сложности по отечественному стандарту Д = 40 дБ (100 раз), В = 6 дБ ( 1,7 раз).

Схема простой АРУ.

В незадержанной АРУ (Рис.5) детектор приёмника и детектор АРУ можно совместить в одном VD1C5R5C6. Включение диода VD1 позволяет выделить на нагрузке R6С6 постоянную составляющую напряжения отрицательной полярности, из которого после фильтрации в ФНЧ RАРУСАРУ образуется регулирующее напряжение – UРЕГ.

Читайте также:  Регулировка цепи honda bros

Начальное базовое смещение +U транзистора VT1 первого каскада УПЧ образуется как сумма положительного напряжения +UПИТ, подаваемого от источника К через R2, L2 и отрицательного регулирующего напряжения — UАРУ. Причём +U = +UПИТ – UАРУ, т.е. IUПИТI > IUАРУI.

Рис.5 Принципиальная схема простой АРУ.

Чем больше амплитуда принимаемых сигналов UВХ, тем больше регулирующее напряжение – UАРУ, что приводит к уменьшению начального базового смещения +U, крутизны характеристики транзистора S и усиления каскада УПЧ КU. В результате компенсации, выходное напряжение приёмника UВЫХ будет стабильно и мало зависеть от изменения уровня входного сигнала UВХ.

Постоянная времени АРУ, как было отмечено раньше, tАРУ = RАРУCАРУ = 0,1…0,3 сек. Учитывая, что в биполярных транзисторах базовый ток I относительно большой и принимает значения десятки и сотни мкА, то сопротивление резистора RАРУ не может быть больше нескольких десятков кОм (по схеме RАРУ = 20 кОм). Конденсатор САРУ рассчитывается из соотношения САРУ = (0,1…0,3 с) ⁄ RАРУ = 10 мкФ.

Использование в регулирующих каскадах полевых транзисторов с большим входным сопротивлением позволяет увеличить RАРУ до 1…1,5 МОм. Тогда номинал САРУ составит всего 0,1 мкФ.

Сопротивление резистора обратной связи R1 должно быть незначительным, чтобы ООС не снижала эффективность регулировки системы АРУ.

Из-за уменьшении чувствительности приёмника при слабых сигналах простую АРУ нельзя использовать для регулировки усиления в каскадах УРЧ, так как при этом снижается отношение сигнал/шум.

Дата добавления: 2016-07-05 ; просмотров: 13017 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Система автоматической регулировки усиления

Системы автоматической регулировки усиления (АРУ) широко применяются в радиоприемных устройствах различного назначения, они предназначены для стабилизации уровня сигнала на выходе усилителей при большом динамическом диапазоне изменения входного сигнала, достигающим, например, в радиолокационных приемниках 60—100 дБ. При таком диапазоне изменения входного сигнала и отсутствии системы АРУ нарушается нормальная работа приемных устройств, что проявляет­ся в перегрузке последующих каскадов приемника. В сис­темах автоматического сопровождения цели РЛС перегрузка каскадов приемника приводит к искажению ам­плитудной модуляции, к снижению коэффициентов усиления, вплоть до срыва сопровождения. В системах стабилизации частоты большой динамический диапазон изменения сигнала вызывает изменение крутизны дискри­минационной характеристики, что резко снижает качество работы системы.

Системы АРУ делятся на три основных типа [7]: 1) с обратной связью (с обратным действием); 2) без обратной связи (прямого действия); 3) комбинированные. Существуют одно- и многопетлевые системы АРУ с не­прерывной и цифровой регулировкой.

Функциональная схема системы АРУ с обратной связью показана на рис. 1.13. Входное напряжение uвх(t) поступает на усилитель (У) с регулируемым коэффициентом усилении. Выходное напряжение этого усилителя детек­тируется, после чего суммируется с напряжением задерж­Ки uз. Суммарное напряжение ис усиливается усилите­лем постоянного тока (УПТ) и подается на фильтр ниж­них частот (ФНЧ). Напряжение с ФНЧ uу используется для регулировки коэффициента усиления входного сигнала. Зависимость коэффициента усиления усилителя входного сигнала от управляющего напряжения называ­ют регулировочной характеристикой. В общем случае эта характеристика нелинейная, однако приближенно она может быть заменена линейной зависимостью вида

Читайте также:  Инструмент для регулировки клапанов ниссан

где k — коэффициент усиления при управляющем напря­жении, равном нулю; а — крутизна регулировочной ха­рактеристики.

Изменение коэффициента усиления может быть достигнуто различными способами: путем включения управляемого аттенюатора, изменением крутизны характери­стик электронных приборов и др. [7]. В качестве приме­ра на рис. 1.14 показана схема усилителя с регулируе­мым коэффициентом усиления, в котором управляющее напряжение подается на базу транзистора VT. При уве­личении управляющего напряжения напряжение на ба­зе повышается, в результате чего коэффициент усиления каскада уменьшается.

Эффект стабилизации уровня выходного напряжения uвых(t) достигается за счет того, что с ростом уровни uвых(t) увеличивается и управляющее напряжение uу, под действием которого в соответствии с выражением (1.22) уменьшается коэффициент усиления усилителя входного сигнала, что приводит к снижению уровня вы­ходного сигнала.

Для того чтобы не снижать усиление при слабых входных сигналах и начать управление коэффициентом уси­ления усилителя только при достижении входным сигна­лом определенного уровня в систему АРУ подают напря­жение задержки ЕЕЕ3. В результате напряжение управления появится только в том случае, когда напряжение с амплитудного детектора превысит напряжение за­держки.

ФНЧ в цепи обратной связи системы АРУ предназначен для передачи управляющего напряжения с частотами изменения уровня выходного напряжения АРУ. При этом ФНЧ не должен пропускать колебания управляю­щего напряжения с частотами спектра полезной модуля­ции сигнала uвх(t), в противном случае происходит де­модуляция входного сигнала, ослабляющая выходной сигнал.

Непосредственно из схемы рис. 1.13 следует, что напряжение на выходе УПТ

если

, если (1.23)

где kд— коэффициент передачи детектора.

Управляющее напряжение на выходе ФНЧ находят из следующего дифференциального уравнения:

Напряжение на выходе системы АРУ

(1.25)

Уравнениям (1.23) — (1.25) соответствует структурная схема системы АРУ, изображенная на рис. 1.15. В этой схеме нелинейное звено описывается зависимостью

(1.26)

Отличительной особенностью системы АРУ по сравнению с системами РА, рассмотренными в предыдущих параграфах, является зависимость коэффициента передачи системы от времени, что происходит из-за наличия в системе (рис. 1.15) звена с коэффициентом передачи k(t). Кроме того, из-за нелинейного звена с характеристикой (1.26) система АРУ является нелинейной. Анализ нелинейных систем с перемен­ными параметрами явля­ется сложной задачей

В установившемся режиме при постоянном уровне напряжения на входе системы АРУ из уравнений (1.23) — (1.26) следуют следующие соотношения:

(1.27)

где kупт — коэффициент усиления УПТ.

Уравнение (1.27) определяет регулировочную характеристику системы АРУ с обратной связью (кривая 2 на рис. 1.16). на этом же рисунке изображена характе­ристика без АРУ (кривая 1) и регулировочная характе­ристика с идеальной системой АРУ (кривая 3).

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Настройки и регулировки