Автоматическая регулировка усиления в приемниках

Автоматическая регулировка усиления. Автоматическая регулировка усиления (АРУ) предназначается для сохранения заданного постоянства выходного напряжения приемника в условиях изменения уровня

Автоматическая регулировка усиления (АРУ) предназначается для сохранения заданного постоянства выходного напряжения приемника в условиях изменения уровня принимаемых сигналов. Существует два основных типа систем АРУ:

— система АРУ с обратной связью (система регулировки «назад» или обратная регулировка);

— система АРУ без обратной связи (система «вперед» или прямая регулировка).

Возможна также комбинированная схема, сочетающая обратную и прямую регулировки.

На рисунке 118 показана структурная схема обратной АРУ.

Она обеспечивает уменьшение усиления с увеличением уровня сигнала и увеличение усиления при уменьшении уровня сигнала. Сигнал с выхода тракта УПЧ подается на амплитудные детекторы сигнала Д и АРУ ДАРУ. С детектора напряжение через фильтр нижних частот ФНЧ подводится к регулируемым каскадам, в которых регулировка усиления осуществляется одним из способов.

Рисунок 118– Структурная схема АРУ с обратной связью (регулировка «назад»)

В случае режимной регулировки управляющее напряжение с детектора АРУ подается на управляющие электроды (в цепи базы, затвора и т.п.) усилительных приборов регулируемых каскадов. Если сигнал на входе приемника имеет нормальную величину, то на управляющих электродах усилительных приборов действует напряжение, соответствующее исходной (нормальной) рабочей точке. Увеличение уровня несущего сигнала приводит к увеличению напряжения выпрямленного напряжения. Это напряжение через фильтр подается на управляющие электроды усилительных приборов регулируемых каскадов и снижает их усиление.

Основная особенность схемы АРУ с обратной связью – невозможность обеспечения полного постоянства выходного напряжения, так как сам процесс регулирования предполагает наличие изменений напряжения сигнала. Можно уменьшить эти изменения до незначительной величины, но полностью устранить нельзя.

Система АРУ с прямым регулированием (рис.119) характерна тем, что регулируемые каскады находятся после узла, с которого поступает сигнал на детектор АРУ.

Если попытаться охватить регулировкой первые каскады приемника, то в цепи АРУ необходимо такое же усиление, что и в основном канале. Это сильно усложняет схему приемника. Если же снимать напряжение для АРУ с какого-то промежуточного каскада, то все предыдущие не будут подвергаться регулировке и могут перегружаться.

Рисунок 119 – Структурная схема прямой АРУ

Преимуществом АРУ «вперед» является возможность получить при определенных условиях строгое постоянство выходного напряжения приемника, а при необходимости – даже падение его с ростом входного сигнала. Однако ее очень сложно выполнить как в конструктивном отношении, так и с точки зрения подбора характеристик регулируемых элементов, и поэтому в приемниках АРУ «вперед» используется очень редко.

Рассмотрим более подробно различные виды обратной АРУ. Используются простая АРУ, АРУ с задержкой, АРУ с задержкой и усилением.

В простой АРУ напряжение с детектора АРУ, который можно совместить с детектором сигнала, через фильтр НЧ подается на регулируемые каскады при любых, даже при самых малых, уровнях входного сигнала.

Рисунок 120 – Амплитудные характеристики приемника:

1 – без АРУ; 2 – при простой АРУ; 3 – при АРУ с задержкой;

4 – при АРУ с задержкой и усилением

Из сравнения амплитудных характеристик приемника (рис.120) без АРУ (1) и с простой АРУ (2) видно, что при этой АРУ коэффициент усиления приемника уменьшается не только для больших сигналов, но и для самых маленьких, когда уменьшение усиления не имеет смысла. Это основной недостаток простой АРУ, и поэтому она применяется редко и только в простейших радиовещательных приемниках. Недостатки простой АРУ устраняются использованием АРУ с задержкой. Основное отличие АРУ с задержкой от простой в том, что пока уровень несущей на входе приемника не превосходит величины соответствующей номинальной чувствительности, детектор АРУ закрыт напряжением задержки Ез и система АРУ не работает.

Источник

Принцип автоматической регулировки усиления в приемниках (АРУ).

Напряжение входного сигнала приёмника может изменяться в очень больших пределах на 40…80 дБ (10 2 …10 4 раз), что вызывает изменение уровня, а, следовательно, и мощности сигнала на выходе приёмника. Для защиты оконечных устройств от перегрузки необходимо регулировать усиление приёмника в таких же пределах. Ручная регулировка усиления позволяет обеспечить нормальную работу приёмника только при очень медленных изменениях уровня входного сигнала, например, при перестройке с одной радиостанции на другую, да и то – сопряжена с эксплуатационными неудобствами. При больших скоростях изменения уровня входного сигнала, например при быстрых замираниях радиоволн, необходимо использовать автоматическую регулировку усиления (АРУ).

Читайте также:  Регулировка угла наклона подушки сиденья

Таким образом, АРУ должна обеспечить относительное постоянство напряжения сигнала на выходе детектора и приёмника при изменении напряжения сигнала на входе РПУ.

Рассмотрим наиболее часто применяемую инерционную систему АРУ непрерывного действия с обратным регулированием (за счёт обратной связи по постоянному току) (Рис.2).

Рис.2 Структурная схема АРУ.

Приведённая на Рис.2 схема АРУ обеспечивает уменьшения усиления УРЧ и УПЧ при увеличении уровня входного сигнала UВХ и, наоборот, увеличение усиления при снижении уровня сигнала. Регулировка осуществляется за счёт отбора энергии полезного сигнала UС и преобразования его в постоянное регулирующее напряжение UРЕГ, изменяющееся пропорционально амплитуде входного сигнала UВХ. Этим напряжением регулируется усиление каскадов УРЧ и некоторых каскадов УПЧ так, чтобы уровень выходного напряжения UВЫХ практически не изменялся.

Сигнал промежуточной частоты UС = UПР с выхода УПЧ детектируется амплитудным детектором АРУ (АДАРУ) и фильтруется в ФНЧ с постоянной времени tФНЧ = 0,1…0,3 сек.

Большее значение tФНЧ > 0,3 сек приведёт к недопустимому увеличению инерционности системы АРУ, что будет заметно на слух при резком изменении уровня входного сигнала.

Меньшее значение tФНЧ

Регулировка усиления каскадов может осуществляться различными способами:

— изменением крутизны характеристики усилительных элементов (КU = S RН);

— изменением сопротивления нагрузки усилительных элементов (КU = S RН);

— изменением напряжения питания усилительных элементов (КU

Два последних способа менее эффективны, так как пределы регулировки усиления не превышают 2…4 раза на один каскад. Регулировка за счёт изменения режима работы транзистора по базовой цепи (изменением крутизны входной динамической характеристики) позволяет изменять усиление каскада в 8…10 раз.

Для этой цели разработаны специальные транзисторы с переменной крутизной, в которых растянутый начальный участок входной динамической характеристики позволяет плавно и в широких пределах изменять её крутизну (Рис.3). К таким транзисторам можно отнести ГТ328, ГТ346, КТ3127, КП307 и много других.

На Рис.3 видно, что при увеличении начального базового смещения U’ > U рабочая точка перемещается на участок с большей крутизной входной динамической характеристики. При этом амплитуда базового тока увеличивается I’Бm > IБm за счёт увеличения усиления транзистора.

Изменение U происходит автоматически по системе АРУ при помощи регулирующего напряжения UРЕГ.

Рис.3 Пояснение принципа регулировки усиления транзистора изменением напряжения базового смещения U.

При выборе каскадов для регулировки усиления в системе АРУ необходимо учитывать следующее:

1. Амплитуда усиливаемого сигнала должна быть малой, чтобы использование нелинейных участков характеристик транзисторов не привело к появлению нелинейных искажений. С этой точки зрения пригодны все каскады УРЧ и первые каскады УПЧ.

2. Нельзя использовать в качестве регулируемых узкополосные полосовые усилители с нагрузкой в виде ФСС или пьезофильтров. Значительное изменение режимов работы транзисторов может привести к изменению межэлектродных ёмкостей транзистора, а следовательно к расстройке избирательной системы.

3. Нельзя регулировать усиление в смесительных каскада преобразователей частоты, так как при этом нарушается оптимальный режим их работы.

На Рис.4 приведены амплитудные характеристики приёмника для различных типов АРУ.

Если в приёмнике отсутствует АРУ, то зависимость амплитуды выходного напряжения от амплитуды входного UВЫХ = ƒ(UВХ) соответствует кривой 1. При слабых сигналах она линейна, а при сильных в последних каскадах приёмника наступает перегрузка и усиление приёмника уменьшается, что приводит к появлению искажений.

При наличии простой АРУ (кривая 2) регулирующее напряжение создаётся и используется при любых амплитудах входного сигнала. Недостатком простой АРУ является то, что усиление приёмника снижается не только для сильных сигналов, но и для самых слабых (хотя и в меньшей степени), для приёма которых необходимо использовать полное усиление приёмника.

Читайте также:  Hammerflex bpl3814 регулировка карбюратора
Рис.4 Амплитудные харктеристики приёмника. 1 – без АРУ; 2 – с простой АРУ; 3 – при задержанной АРУ; 4 – при задержанной и усиленной АРУ.

Этот недостаток устраняется в задержанной АРУ (кривая 3), где регулирование начинается тогда, когда напряжение на входе приёмника достигнет определённого уровня. Подобный режим можно получить, если подать на диод детектора АРУ некоторое запирающее напряжение, называемое напряжением задержки UЗАД. Его обычно выбирают равным амплитуде напряжения на входе детектора, которое соответствуюет номинальной чувствительности приёмника UЗАД = UВХ.МИН. Таким образом при увеличении уровня сигнала от 0 до UВХ.МИН система АРУ не действует и увеличение выходного напряжения происходит по кривой 1. После того как уровень сигнала превысит UЗАД, начинает действовать АРУ и выходное напряжение будет изменяться далее по кривой 3. Для регулирования усиления в высокочувствительных каскадах УРЧ применение АРУ с задержкой обязательно.

Для улучшения стабилизирующего действия системы АРУ в её шину вводят дополнительные усилители постоянного тока УПТ. Такая АРУ называется задержанной и усиленной (кривая 4).

Эффективность АРУ характеризуется следующими показателями:

— величиной изменения входного напряжения Д= UВХ.МАХUВХ.МИН;

— допустимой величиной изменения выходного напряжения В = UВЫХ.МАХUВЫХ.МИН;

— величиной изменения коэффициента усиления системой АРУ: Д ⁄ В (раз).

Для приёмников высшей группы сложности по отечественному стандарту Д = 40 дБ (100 раз), В = 6 дБ ( 1,7 раз).

Схема простой АРУ.

В незадержанной АРУ (Рис.5) детектор приёмника и детектор АРУ можно совместить в одном VD1C5R5C6. Включение диода VD1 позволяет выделить на нагрузке R6С6 постоянную составляющую напряжения отрицательной полярности, из которого после фильтрации в ФНЧ RАРУСАРУ образуется регулирующее напряжение – UРЕГ.

Начальное базовое смещение +U транзистора VT1 первого каскада УПЧ образуется как сумма положительного напряжения +UПИТ, подаваемого от источника К через R2, L2 и отрицательного регулирующего напряжения — UАРУ. Причём +U = +UПИТ – UАРУ, т.е. IUПИТI > IUАРУI.

Рис.5 Принципиальная схема простой АРУ.

Чем больше амплитуда принимаемых сигналов UВХ, тем больше регулирующее напряжение – UАРУ, что приводит к уменьшению начального базового смещения +U, крутизны характеристики транзистора S и усиления каскада УПЧ КU. В результате компенсации, выходное напряжение приёмника UВЫХ будет стабильно и мало зависеть от изменения уровня входного сигнала UВХ.

Постоянная времени АРУ, как было отмечено раньше, tАРУ = RАРУCАРУ = 0,1…0,3 сек. Учитывая, что в биполярных транзисторах базовый ток I относительно большой и принимает значения десятки и сотни мкА, то сопротивление резистора RАРУ не может быть больше нескольких десятков кОм (по схеме RАРУ = 20 кОм). Конденсатор САРУ рассчитывается из соотношения САРУ = (0,1…0,3 с) ⁄ RАРУ = 10 мкФ.

Использование в регулирующих каскадах полевых транзисторов с большим входным сопротивлением позволяет увеличить RАРУ до 1…1,5 МОм. Тогда номинал САРУ составит всего 0,1 мкФ.

Сопротивление резистора обратной связи R1 должно быть незначительным, чтобы ООС не снижала эффективность регулировки системы АРУ.

Из-за уменьшении чувствительности приёмника при слабых сигналах простую АРУ нельзя использовать для регулировки усиления в каскадах УРЧ, так как при этом снижается отношение сигнал/шум.

Дата добавления: 2016-07-05 ; просмотров: 13013 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Схемы АРУ

Дело в том, что величины сигналов, наведенных в приемной антенне от различных передающих станций, могут отличаться друг от друга в тысячи и десятки тысяч раз. И теоретически при отсутствии системы АРГ во столько же раз должен меняться и уровень громкости на выходе приемника. На самом деле это, конечно же, невозможно; если при приеме сигнала маломощной удаленной станции с напряженностью поля в точке приема в 10 мкВ радиопередача все же слышна, хоть и тихо, то при приёме мощной местной станции, создающей напряженность поля, скажем, в 1 мВ, низкочастотный сигнал на выходе приемника должен возрасти в 100 раз (это по напряжению!) или в 10 000, раз (. ) по мощности.

Естественно, этого не происходит, а про исходит другое: сигнал мощной местной станции принимается таким приемникам с совершенно недопустимыми нелинейными искажениями.

Читайте также:  Регулировка клапанов на инжекторной семерке

До появления систем АРГ с этим боролись с помощью ручного регулятора громкости, пользоваться которым приводилось непрерывно при перестройке с одной станции на другую.

Идея автоматической регулировки состояла в том, чтобы поручить самому приемнику определять уровень принимаемого сигнала и в соответствии с этим либо уменьшать, либо увеличивать чувствительность приемника. А поскольку чувствительность любого приемника, как известно, напрямую зависит от общего коэффициента усиления всего тракта, то система АРГ должна была превратиться в систему АРУ, т.е. систему, автоматически регулирующую коэффициент усиления приемника при приеме станций с разным уровнем сигнала.

При поверхностном подходе к решению проблемы наиболее правильным казалось осуществлять такую регулировку в УЗЧ, поскольку регулировать предполагалось именно громкость звучания. Однако такая регулировка неизбежно привела бы к резкому уменьшению динамического диапазона, что исказило бы воспроизводимый звук не меньше, чем нелинейные искажения.

Окончательное решение свелось к введению АРУ в тракты промежуточной и высокой частот, поскольку любое изменение уровня модулированного сигнала не меняет динамический диапазон модулирующего сигнала.

Оставалось выбрать форму управляющего сигнала. Таким самый удобным сигналом оказалась постоянная составляющая на выходе детектора, поскольку ее величина была прямо пропорциональна амплитуде несущей модулированного сигнала, а полярность можно было выбрать любой, изменяя полярность включения детекторного диода, благо это никак не отражалось на процессе детектирования.

Значит, изменяя в определенных пределах величину этого постоянного напряжения, можно в соответствующих пределах изменять крутизну характеристики транзистора и, следовательно, коэффициент усиления каскада, а значит и приемника в целом.

Остальное оказалось делом техники и в результате появилась первая практическая схема АРУ которая оказалась никуда не годной. Она, правда, эффективно регулировала усиление приемника, но при этом с одинаковым удовольствием уменьшала громкости как самых мощных местных станций, так и любых другие в том числе и тех маломощных удаленных, сигналы которых и без того были едва слышны.

Это дополнение сделало систему АРУ вполне работоспособной, и в таком виде она верой и правдой служила во всех приемниках на протяжении многих лет. Схема такой «простой» АРУ с задержкой приведена на рис. 2.25, а.

Однако со временем выяснилось, что ее эффективность не всегда, оказывается достаточной и в ряде случаев не обеспечивает нужного уменьшений усиления при приеме самых мощных станций. Тогда возникла идея предварительно усилить управляющий сигнал АРУ с помощью усилителя постоянного тока (УПТ) на дополнительном транзисторе, в результате чего появилась схема усиленной АРУ с задержкой (рис. 2.25, б). Низкочастотная составляющая продетектированного сигнала через фильтр-делитель R7R9С4 и разделительный конденсатор С2 поступает на УЗЧ, а постоянная составляющая усиливается транзистором VТ6 и подводится к базе транзистора VТ4 (УПЧ) непосредственно и к базе транзистора VT1 (УВЧ) через дополнительную фильтрующую цепь R3С1. Схема обеспечивает изменение выходного сигналя но более чем в два раза (на 6 дБ) при изменении напряжения на входе приемника от 40 до 4000 мкВ (на 40 дБ).

Со временем системы АРУ непрерывно совершенствовались, «обрастая» различными дополнениями. В качестве примера приведем высокоэффективную схему с дополнительным УПТ и отдельным детектором АРУ, примененную в свое время в промышленном профессиональном радиоприемнике КРУ (рис. 2.25, в) и позволившую при охватывании системой АРУ всего двух каскадов (УВЧ и УПЧ) обеспечить изменение сигнала на выходе на 6 дБ при изменении входного сигнала на 60дБ (в 1000 раз).

Схема работает следующим образом, При отсутствии сигнала тран­зистор VТ4 (УПТ) закрыт. При появлении сигнала транзистор открывается и через резистор R8 начинает протекать дополнительный ток транзистора УПТ. Поскольку потенциал базы транзистора не меняется (он определяется только напряжением батареи GВ1), дополнительное падение напряжения в цепи эмиттера транзистора УПТ приводит к уменьшению тока через транзистор и, следовательно, к уменьшению усиления.

Рис. 2.25. Схемы АРУ в вещательных приемниках:

Можно было бы привести еще немало других схем АРУ (например АРУ с регулировкой вперед и назад, ключевую АРУ и др.), однако и приведенной информации вполне достаточно, чтобы вы получили необходимые представления о принципах работы и схемотехнике систем АРУ.

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Настройки и регулировки