Частотный преобразователь с ручной регулировкой

Содержание

Частотные преобразователи

Частотный преобразователь еще называют частотно-регулируемым электроприводом, или частотником. Статическое преобразовательное устройство меняет скорость вращения асинхронных электрических двигателей переменного тока.

Принцип работы частотника

Частотный преобразователь изменяет частоту и уровень напряжения питания мотора. Это позволяет регулировать параметры вращения электрического асинхронного двигателя. Все частотники имеют значительный КПД — около 98%. Частно-регулируемый электропривод использует для работы только активную составляющую тока нагрузки из сети. Микропроцессорная система управления позволяет с высокой точностью контролировать работу электродвигателя. Устройство помогает регулировать все основные параметры работы мотора. Использование частотников снижает риск аварий и внештатных ситуаций.

Частотники используют на различных промышленных объектах. Особенно выгодна установка частотных преобразователей в системах транспортировки жидкостей. Раньше для контроля за производительностью работы таких объектов использовали задвижки или регулирующие клапаны. Современная альтернатива — монтаж частотно-регулируемого электропривода. Частотник будет регулировать производительность асинхронного двигателя, который обеспечивает работу колеса насосного агрегата или вентилятора.

Конструкция

Частотные преобразователи состоят из:

Чтобы улучшить форму выходного напряжения, между инвертором и мотором иногда монтируют дроссель. Уменьшить электромагнитные помехи помогает EMC-фильтр.

Алгоритмы управления частотным преобразователем

Для контроля за работой частотников может быть выбран один из следующих алгоритмов управления.

Частотный. Этот алгоритм рекомендуют использовать, если известна зависимость момента нагрузки двигателя, и этот показатель остается практически неизменным при одинаковой частоте. Для частотного управления нижняя граница регулирования частоты должна быть не меньше 5-10 Гц при независимом от частоты моменте. Стандартные нагрузки с моментом, зависимым от скорости вращения, — работа на центробежный насос или вентилятор. Диапазон регулирования частоты в этом случае может составить от 5 до 50 Гц и выше.

Частотный с обратной связью по скорости. Подходит для прецизионного регулирования, если известна зависимость момента от скорости вращения. Для управления преобразователем по такому алгоритму нужно использовать инкрементальный энкодер.

Векторный. Этот алгоритм управления частотниками выбирают, если во время работы нагрузка на одинаковой частоте меняется, а прямой связи между моментом нагрузки и скоростью вращения нет.

Векторный алгоритм также используют, если нужно получить расширенный диапазон регулирования частоты при номинальных моментах. Например, 0-50 Гц для момента 100% или даже кратковременно 150–200% от номинального момента. Для реализации векторного метода необходимо в режиме реального времени проводить сложные вычисления. Процессор частотного преобразователя выполняет их автоматически на основании данных о выходном токе, частоте и напряжении, а также паспортных характеристик электродвигателя, которые вводит пользователь.

Частотный преобразователь реагирует на изменение выходного тока (момента нагрузки) со скоростью 50-200 мсек. Векторный алгоритм уменьшает реактивный ток двигателя при снижении нагрузки с помощью одновременного уменьшения напряжения на электродвигателе. Если нагрузка на валу возрастает, частотник увеличивает напряжение на двигателе до оптимальных показателей.

Векторный с обратной связью по скорости. Метод подходит для прецизионного регулирования скорости вращения, если при работе нагрузка меняется при неизменных показателях частоты. Этот алгоритм управления частотниками также используют, если нужен максимальный диапазон регулирования частоты. Для такого метода управления необходим инкрементальный энкодер.

Читайте также:  Mares cyrano 550 с регулировкой

Векторные преобразователи частоты ОВЕН ПЧВ с функцией автоматической оптимизации энергопотребления предназначены для управления частотой вращения асинхронных двигателей в составе приводов промышленных установок, систем отопления, вентиляции и кондиционирования воздуха. Реальное снижение энергопотребления при использовании ОВЕН ПЧВ может достигать 35 %.

Источник

Преобразователи частоты

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:

Минусы непосредственных преобразователей частоты:

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Плюсы преобразователей с промежуточным звеном постоянного тока:

Минусы преобразователей с промежуточным звеном постоянного тока:

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление.

2) Внешнее управление.

3) Управление по дискретным входам или “сухим контактам”.

4) Управление по событиям.

Преимущества частотных преобразователей.

1) Экономия электроэнергии.

2) Увеличение срока службы промышленного оборудования.

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.

5) Широкий диапазон мощности двигателей.

6) Защита электродвигателя от аварий и аномальных режимов работы.

7) Снижение уровня шума работающего двигателя.

Сферы применения

Частотно-регулируемые приводы применяют:

Читайте также:  Регулировка клапанов уаз 421 мотор

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Источник

Как запустить и настроить частотный преобразователь — инструкция для чайников

Его называют инвертор, частотный регулятор или просто «частотник». Зачем же нужен этот черный ящик и как его настроить? Попробуем разобраться на примере Inovance MD310.

Преобразователь частоты — это силовой электронный блок, который является посредником между системой управления и электродвигателем. Он обеспечивает питание для двигателя, защищает его и задаёт необходимый режим работы — разгон, торможение или постоянное изменение скорости.

Для примера возьмем шлифовальный станок, который часто можно встретить в промышленном цеху или в столярной мастерской. Для качественной работы станка движение должно осуществляться в двух направлениях, скорость вращения ленты — меняться плавно, а аварийная кнопка мгновенно отключать питание. Без преобразователя частоты тут точно не обойтись.


Рис.1 Внешний вид шлифовального станка.

Подключение силовых цепей

Все провода, подключаемые к частотному преобразователю, можно разделить на 2 группы: силовые и контрольные. Рассмотрим подключение силовых.

Три провода сетевого питания 380 В, 50 Гц — клеммы R, S, T + провод заземления PE. Нейтраль частотному преобразователю не нужна. Даже если она у вас есть, подключать не нужно. А вот провода питания можно подключать в любом порядке. При необходимости чередование фаз можно изменить в программе частотника.

Три провода питания двигателя — клеммы U, V, W + провод заземления PE. На выходе напряжение может меняться от 0 до 380 В, а частота от 0 до 500 Гц. В этом и кроется смысл работы частотного преобразователя — он позволяет изменять скорость двигателя от нуля до номинального значения и даже выше, если это позволяет механика.


Рис.2 Подключение силовых цепей

Подключение цепей управления

С контрольными проводами всё несколько сложнее. Тут нужно хорошо подумать, прежде чем подключать. На выбор целая россыпь дискретных и аналоговых входов и выходов. В документации производители чаще всего публикуют стандартную схему подключения с заводскими настройками, но для каждого механизма на деле нужна своя схема и индивидуальные настройки.


Рис.3 Подключение цепей управления

У нас задача не самая сложная. Для управления шлифовальной машиной достаточно кнопок «Пуск», «Стоп», переключателя «Вперед – Назад» и переменного резистора для изменения скорости вращения, его ещё называют потенциометром.

К дискретным входам DI подключаются сигналы, которые могут принимать одно из двух состояний — «вкл» и «выкл» или логический 0 и 1. В нашей схеме это кнопки «Пуск», «Стоп», переключатель направления и аварийный «грибок». Мы будем использовать кнопки без фиксации, которые уже установлены на станке.

К аналоговым входам AI подключаются сигналы с непрерывно меняющейся величиной тока 4. 20 мА или напряжения 0. 10 В. Это могут быть датчики, сигналы от контроллера или другого внешнего устройства. В нашем случае — это ручка потенциометра, которая обеспечивает плавную регулировку скорости.

Потенциометр или переменный резистор — это регулируемый делитель напряжения с тремя контактами.

» >
Рис.4 Внешний вид потенциометра

На два крайних неподвижных контакта подаётся постоянное напряжение 10 В от частотного преобразователя, а средний подвижный контакт служит для снятия текущей величины напряжения, которая зависит от положения ручки. Если ручка повернута наполовину, значит и напряжение будет только половинное = 5 В. Преобразователь пересчитает напряжение в задание скорости и разгонит двигатель.


Рис.5 Подключение потенциометра

Любой потенциометр не подойдёт, необходим с сопротивлением от 2 до 5 кОм, чтобы аналоговый вход стабильно работал. А ещё он должен быть с удобной ручкой, ведь крутить его придётся постоянно. Мощность может быть любой, даже 0,125 Вт достаточно. Идеально подойдёт XB5AD912R4K7 с сопротивлением 4,7 кОм.

Читайте также:  Регулировка тормозов tektro hdc 300

На дискретные — DO и аналоговые выходы AO преобразователь выдает информацию о своем текущем состоянии, скорости или токе двигателя, достижении заданных значений или выходе за их пределы. В нашем случае выходы не используются, поэтому подключать нечего.

Настройка

Недостаточно просто подключить все провода к частотнику, его ещё нужно правильно настроить, чтобы механизм работал стабильно и долго. Для этого в частотном преобразователе несколько сотен параметров. Конечно, все настраивать не придётся, но вот основные — обязательно.

Настройка осуществляется с помощью клавиш на встроенной панели управления. С ними всё предельно просто.

Кнопка PRG отвечает за вход и выход из режима программирования. Кнопки вверх, вниз и вбок осуществляют навигацию внутри меню, а кнопка Enter — подтверждает выбор параметра или его значения.

MF.K — это дополнительная функциональная кнопка, которую можно настроить на необходимое действие, например переключение между местным и дистанционным управлением или смену направления вращения.

Зеленая и красная кнопки — это Пуск и Стоп, если управление осуществляется с панели.

Если запутались, не беда. Нужно несколько раз нажать на кнопку PRG, чтобы вернуться к исходному состоянию.

» >
Рис.6 Внешний вид панели управления

А теперь к параметрированию

Во-первых, необходимо дать понять частотному преобразователю, какой двигатель к нему подключен. Для этого в параметры с F1-01 по F1-05 запишем значения с шильдика двигателя:

F1-01 = 1,5 кВт — номинальная мощность двигателя
F1-02 = 380 В — номинальное напряжение двигателя
F1-03 = 3,75 А — номинальный ток двигателя
F1-04 = 50 Гц — номинальная частота двигателя
F1-05 = 1400 об/мин — номинальная скорость двигателя


Рис.7 Шильдик двигателя

Теперь, когда основные данные о двигателе есть, нужно провести автонастройку. Этот процесс нужен, чтобы частотный преобразователь ещё лучше адаптировался к работе с конкретным двигателем: вычислил сопротивление и индуктивность обмоток. Так управление будет точнее, а экономия энергии — больше.

Для запуска процедуры устанавливаем F1-37 = 1 — статическая автонастройка и нажимаем кнопку «Run» на панели управления. Через пару минут дисплей переходит в исходное состояние и частотник готов к работе.

Далее переведём управление на внешние кнопки и настроим его

В нашем случае подойдёт трёхпроводное управление, где кнопка «Стоп» осуществляет разрешение на работу, кнопка «Старт» — запуск станка, а переключатель выбирает направление вращения.


Рис.8 Схема трёхпроводного управления

Настроим эти параметры:
F0-02 = 1 — управление через клеммы управления
F0-03 = 2 — задание частоты с AI1 (потенциометр)
F4-00 = 1 — пуск
F4-01 = 2 — выбор направления движения
F4-02 = 3 — разрешение работы
F4-03 = 47 — аварийный останов
F4-11 = 3 — режим трёхпроводного управления

Теперь станок начинает оживать, реагирует на нажатие кнопок и вращение ручки скорости. Остаётся настроить время разгона, торможения и проверить на практике удобство использования. Наш частотный преобразователь настроен и готов к использованию!

Защита и безопасность

Преобразователь частоты — умное устройство. После настройки в работу включаются все защитные функции, которые в случае аварии сберегут и сам частотник, и двигатель, и механизм.

Например, при заклинивании: преобразователь вычислит, что ток двигателя намного выше номинального, который мы установили в параметре F1-03 ранее, выдаст ошибку «Перегрузка двигателя» и отключится. Двигатель не перегреется и не сгорит, а механика останется целой.

А если возникла угроза здоровью оператора или поломки оборудования — спасет аварийная кнопка «грибок». При её нажатии преобразователь в мгновение остановит станок и отключит питание. Никто не пострадает!

Вместо заключения

Настройка частотного преобразователя — процесс увлекательный. Порой преобразователь берёт на себя не только управление двигателем, но и целой системой и может заменить даже простой контроллер. К частотнику можно подключать датчики, лампы индикации, реле и даже контакторы. Применение преобразователю можно найти везде: от насосов и конвейеров до сложных станков, подъёмников и лифтов. Главное внимательно изучать документацию и делать всё по порядку, тогда всё обязательно получится.

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Настройки и регулировки