Gm3843 регулировка по напряжению

В настоящее время существует огромное количество различных микросхем, или микрочипов, которые используются в самых различных блоках питания аппаратуры. Если говорить обобщенно, интегральная микросхема представляет собой пластмассовый прямоугольник с гибкими выходами, внутри которого находится вся «умная начинка».

uc3843 — описание, принцип работы, схема включения

Микросхема uc3843 — интегральная схема (ИС), которая предназначена для построения стабилизированных импульсных источников питания с широтно-импульсной модуляцией. В промышленном производстве выпускается в корпусах типа SOIC-8(14), DIP-8.

Основным принципом работы можно назвать применение вместе с uc3843 МОП транзистора. Это объясняется тем фактом, что мощность выходного каскада uc3843 незначительная. Поскольку амплитуда выходного сигнала может достигать напряжения питания МС, в качестве ключа используют МОП-транзистор.

Схема включения uc3843 приведена на рисунке.

uc3842 — описание, принцип работы, схема включения

uc3842 является широтно-импульсным контроллером, который применяется в основном, в преобразователях постоянного напряжения. Очень часто uc3842 используют в блоках питания различной аппаратуры. Подобный элемент можно встретить в «начинке» современных телевизоров и компьютерных мониторов.

Микросхема uc3842 имеет восемь выводов, каждый из которых выполняет свое предназначение:

Типовая схема включения микрочипа uc3842 представлена на рисунке 2.

ka3525a — описание, принцип работы, схема включения

ka3525a — это импульсные стабилизаторы напряжения от производителя Fairchild. Он позволяет обеспечить внутренний мягкий старт, контроль времени. Схема включения отображена на рисунке 3.

uc3845 — описание, принцип работы, схема включения

uc3845 — это универсальный микрочип для однотактных преобразователей напряжения. Используется в прямо- и обратноходовых преобразователях. Работает в режиме реле и полноценного ШИМ стабилизатора напряжения с ограничениями по току. Во время перегрузки микрочип переходит в режим стабилизации тока. Чтобы обеспечить стабилизацию напряжения, необходимы дополнительные резисторы и транзистор.

Принцип работы ШИМ uc3845 основан на контроле среднего значения выходного напряжения и максимального значения тока. Если уменьшается нагрузка, выходное напряжение увеличивается. Амплитуда на токоизмерительном резисторе уменьшается, длительность импульса уменьшается до восстановления баланса между напряжением и током.

Схема включения микросхемы (8 выводов) uc3845 отображена на рисунке 4.

sg3525 — описание, принцип работы, схема включения

Схема подключения видна на рисунке 5.

uc3844 — описание, принцип работы, схема включения

Микросхема uc3844 широко распространена в импульсных блоках питания компьютерной и различной бытовой техники. uc3844 используется для управления полевым ключевым транзистором в схемах ИБП.

Микрочипы uc3844 разработаны специально для DC-DC преобразователей, поскольку преобразовывают постоянное напряжение одной величины в постоянное напряжение другой величины.

Если напряжение питания в норме, на выводе 8 появляется напряжение +5В, которое приводит в запуск генератор OSC.

Производством чипов uc3844 занимаются фирмы UNITRODE, ST и TEXAS INSTRUMENTS.

Схема включения отображена на рисунке 6.

uc3846 — описание, принцип работы, схема включения

ШИМ контроллер uc3846 имеет 16 выводов. Основные принципы работы можно обозначить тезисами:

Основная схема включения микрочипа uc3846 представлена на рисунке 7.

Источник

Шим-контроллеры серии UC184x, UC284x, UC384x.

В статье «TL494, что это за «зверь» такой?», мы рассматривали шим-контроллер TL494.
В этой статье мы рассмотрим не менее, а наверное даже может быть более распространённые шим-контроллеры серии 184х, 284х, 384х.
Все эти шим-контроллеры предназначены для построения импульсных источников питания РЭА, с регулированием по току и напряжению, для управления ключевым каскадом на n-канальном МОП транзисторе.
В принципе это одни и те же контроллеры, отличающиеся лишь диапазоном рабочих температур, в котором эти контроллеры надёжно работают.

Читайте также:  Регулировка натяжной пильной цепи

По традиции давайте посмотрим, что у него имеется внутри.

Состав.

В его составе имеется:
— источник опорного напряжения на 5В с внешним выводом 8;
— схема защиты от снижения напряжения питания (UVLO).
— генератор пилообразного напряжения (генератор);
— компаратор тока, используется в основном по сигналу ограничения тока;
— усилитель ошибки, используется в основном по напряжению;
— схема управления работой выходного каскада;

Микросхемы UCx844 и UСx845 имеют встроенный счетный триггер (обозначенный пунктиром), который служит для получения максимального рабочего цикла (шим-заполнения), равного 50%. Поэтому для задающих генераторов этих микросхем, нужно установить частоту переключения вдвое выше необходимой. Генераторы микросхем UCх842 и UCх843 устанавливаются на необходимую частоту переключения.
Максимальная рабочая частота задающих генераторов контроллеров семейства UCх842/3/4/5, может достигать 500 кГц.
Чем ещё отличаются друг от друга эти микросхемы. Это разным напряжением питания для этих микросхем.
Смотрим таблицу ниже;

Теперь по маркировке можно определить, что это за микросхема, например UC3843AD;
— это шим-контроллер с пониженным током запуска (500 мкА), с включением в работу при достижении напряжения питания 8,4 вольта и выключением при достижении порога напряжения питания 7,6 вольта, с рабочим циклом до 100% и выполнена в корпусе «SOIC-14».

Назначение выводов микросхемы.

Давайте теперь кратко рассмотрим назначение выводов и работу микросхемы (её блоков), а потом посмотрим это практически;

Как это всё работает.

Теперь давайте посмотрим на практике, как работает эта микросхема. Для этого на макетной плате соберём вот такую схему. Это более, чем достаточно для проверки её функциональности.

Запитывать нашу конструкцию будем от регулируемого блока питания, выходное напряжение выставим в районе 14-16 вольт, что вполне достаточно. Контроль выходных напряжений и сигналов будем производить с помощью осциллографа.

Выходной сигнал будем контролировать на выводе 6 микросхемы. Сначала поставим на макетную плату микросхему UC3843 и посмотрим работу генератора пилообразного напряжения, и что у неё на выходе.
Первый луч осциллографа подключим на выход МС (вывод 6), второй к генератору пилообразного напряжения (вывод 4). Движки переменных резисторов вниз по схеме, чтобы не оказывалось влияния на работу микросхемы.

Видим, что с каждым импульсом генератора пилообразного напряжения, на выходе присутствует один импульс с коэффициентом заполнения около 100% (несколько процентов мёртвое время). То есть выходная частота соответствует частоте генератора.
Возьмём теперь микросхему UC3845, и сравним выходное напряжение с 3843.

Что мы видим? На один выходной импульс приходится два импульса генератора пилообразного напряжения. То есть выходная частота этой микросхемы будет в два раза меньше частоты задающего генератора. Коэффициент заполнения выходных импульсов здесь около 50%.
Посмотрим теперь как работает токовая защита. Для этого второй луч подключаем к выводу 3 микросхемы (первый на выходе МС и нулевой уровень этого луча на втором делении снизу). Нулевой уровень второго луча находится внизу экрана ниже нулевого уровня первого луча (луч на уровне одного деления).

Чувствительность второго луча ставим 0,5 вольт на деление. На выводе 3 входное напряжение пока отсутствует и импульсы на выходе (вывод 6) присутствуют.
Начинаем поднимать входное напряжение на выводе «3», имитируя увеличение тока через выходной транзистор.

Что мы видим? Как только входное напряжение на выводе «3» достигло порога в 1,0 вольт (луч поднялся на два деления), на выходе микросхемы импульсы прекратились.
Давайте посмотрим теперь, как происходит регулировка выходного напряжения блока питания микросхемой. Второй луч для этого теперь подключим к выводу «2» микросхемы.

Читайте также:  Регулировка клапанов фольксваген транспортер

На выводе «2» входное напряжение отсутствует. На выводе «6» имеются выходные импульсы. Чувствительность второго луча (нижнего) установлена 1,0 вольт на деление, он в самом низу экрана.
Начинаем потихоньку переменным резистором поднимать входное напряжение на выводе «2» микросхемы до тех пор, пока не будет какого либо изменения на выходе. Нижний луч начал подниматься вверх.

Что мы видим? Как только входное напряжение на выводе «2» поднялось до 2,5 вольт, может чуть повыше (нижний луч поднялся вверх на два с половиной деления), выходные импульсы на выводе «6» прекратились.
Давайте посмотрим теперь, что будет происходить на выходе усилителя ошибки при такой-же ситуации, то есть на выводе «1» микросхемы.
Второй луч подключаем к выводу «1», Чувствительность луча выставим 0,5 вольт на деление, напряжение на входе (вывод «2») опять уменьшаем.

Включаем питание, входное напряжение на выводе «2» минимально, на выводе «1» выходное напряжение в районе 2,5 вольт (нижний луч поднят на пять делений). Начинаем переменным резистором постепенно увеличивать напряжение на «2» выводе микросхемы. Верхний луч пополз вниз, то есть напряжение на выводе «1» начало уменьшаться.
Увеличиваем переменным резистором ещё больше входное напряжение на выводе «2», до каких либо изменений в выходном напряжении на выводе «6».

Всё, импульсы на выходе микросхемы прекратились, первый луч на своей нулевой отметке (второе деление снизу), напряжение на выводе «1» около 0,7 вольта (второй луч поднят чуть больше одного деления от своей нулевой линии).

Выходной каскад микросхемы выполнен по полу-мостовой схеме и рассчитан на средний ток около 200 мА, пиковый же ток может достигать 1,0 А и на этом уровне ограничивается микросхемой.
Выходной каскад может управлять, как мощным полевым, так и биполярным транзистором.

Ну вот по этим микросхемам, в принципе всё, что хотел сказать. В интернете очень много по ним написано, и есть много технической документации. Если хотите узнать по ним что-то большее и более углубленно, поисковик Вам в руки.

Источник

stasikoff › Блог › Регулируемый БП на UC3843 из ATX

Всем здрасьте!
Хочу поведать о своем опыте переделки компьютерного БП ATX в лабораторный БП с регулировкой напряжения и тока.

Подобных переделок в сети полно, но обычно все переделывают схемы на базе ШИМ TL494 и её клонов (KA7500, AZ7500BP и т.д.), я же хочу поведать о переделке блока на базе ШИМ GM3843 (UC3843).
В первую очередь хочу сказать спасибо Андрею 2350 за его замечательную статью про переделку блока. Я то же пытался сделать блок на TL494, но так и не смог полностью победить возбуд на некоторых крайних режимах. В какой-то момент я просто утомился и решил пойти своим путем. Так же хочу сказать спасибо Старичку за схему БП, в которой я увидел простое и логичное решения для схемы регулирования. К сожалению я не сразу узнал кто ее автор, а надо было бы.
Некоторое время назад я делал себе зарядное устройство для гаража из блока на GM3843, но там минимальные переделки по самому блоку для увеличения выходного напряжения до 14.4В, и линейный стабилизатор тока на операционнике и мощном мосфете. Мне очень понравился конструктив блока, схема уверенно питала мощный компрессор от блокировки дифференциала током 25А при напряжении 14.4В (это 360Вт если что) при номинальной мощности блока в 350Вт, при этом надо учитывать что пусковой ток компрессора еще больше! Все остальные блоки, в том числе и на 600Вт, стабильно при этом уходили в защиту.
В принципе, таким образом можно переделать фактически любой БП, где в обратной связи силовой части стоит оптопара.
Под переделку мне попала плата от блока POWERMAN мощностью 250Вт, от 350Вт отличается только размером трансформатора, конструктивом снаббера, емкостью электролитов по входу и максимальным током силового мосфета. В блоке 250Вт стоит W9NK90Z (8 А), а в 350 Вт W12NK90Z (11 А).
Вот подправленная схема такого БП:

Читайте также:  Регулировка пластиковых окон режим проветривания

Схема имеет прямоходовую топологию. Избавляемся от 5-ти вольтовой цепи, убираем супервизор W7510, отключаем схему питания вентилятора, меняем выходные емкости на более высоковольтные, а в обратной связи PC2 собираем такую схемку:

После включения питания должна заработать только дежурка. Проверяем на ней 5 В, затем замыкаем вывод 2 PC1 на землю, должна запуститься силовая часть. Теперь испытываем блок на его возможности. Мой выдал на холостую максимум 40В, не забудьте про конденсаторы на выходе, их предельное напряжение должно быть с запасом.
В качестве нагрузки я использовал резистор 1 Ом мощностью 50 Вт на радиаторе, но на 400 Вт он почему-то взорвался :), так что пришлось использовать автомобильные лампочки от фар.
После испытаний беремся за переделку дежурки.
Вот примерная схема того что должно остаться:

Теперь о деталях. Операционники в схеме регулирования LM358, в качестве выходного диода у меня стоят 2 сборки MBR20100CT параллельно (на плате было место под вторую сборку), вроде работают нормально, но лучше поставить на 150 В или даже на 200 В, например VS-60CTQ150, поскольку обратные выбросы достигают 150 В. Электролитические конденсаторы лучше с низким эквивалентным сопротивлением, так называемые low ESR. К сожалению их выбор на 35 В не велик, можно поставить несколько в параллель EEUFR1V182L (1800 мкФ, 35 В). Дроссель намотан на кольце групповой фильтрации от какого-то мощного БП ATX, содержит 30 витков сложенного вдвое провода ПЭТВ-2 1.5мм. Переменные резисторы СП5-35А весьма хитрой конструкции, благодаря им нет необходимости ставить дополнительный резистор для точной установки тока и напряжения. На выходе блока параллельно клеммам стоит керамический конденсатор на 50 мкФ, он состоит из 5 СМД конденсаторов по 10 мкФ запаянных в параллель на небольшой платке прямо под гайками клемм.
Индикация выполнена на сдвоенном модуле, заказанном на алиэкспрессе. Поскольку модуль был расчитан максимум на 10 А, пришлось добавить делитель и замазать точку. Как перенести точку на соседний индикатор я не знаю, там динамическая индикация и нужно менять прошивку. При указанных номиналах резисторов R4, R3, R6, R7 максимальное напряжение составит 30 В, а ток 30 А. Ограничение по мощности блока можно выставить резистором R2. При наладке рекомендую поставить туда 0.2 — 0.3 Ом.
Собственно все. На данный момент блок нормально вытягивает до 300 Вт, переход с режима стабилизации напряжения в режим стабилизации тока происходит без срыва генерации, возбудов в любых режимах нет, и самое главное, в режиме КЗ полная тишина и на осцилографе красивая картинка, просто мячта! На TL494 такого добиться мне не удавалось.
На холостом ходу нагрузкой для блока является линейный стабилизатор LM317 включенный по схеме источника тока. От резистора пришлось отказаться т.к. при большом выходном напряжении он будет греться как паровоз, а LM317 я поставил на радиатор вместо одного из диодов шоттки, выпаянных из схемы. При большом напряжении ЛМ-ка начинала возбуждаться, поэтому я зашунтировал ее керамикой.

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Настройки и регулировки