Lm317 регулировка выходного напряжения

Линейный стабилизатор напряжения с регулировкой на LM317 и NPN транзисторе

В предыдущих статьях я уже рассказывал о различных схемах линейных стабилизаторов напряжения. Например, была статья про стабилизатор на базе TL431 и NPN транзисторов, а также на базе LM317, усиленной PNP транзистором. Сегодня я хочу рассказать про другую схему: если мы захотим усилить LM317 не PNP, а NPN транзистором.

Основные характеристики:
• Входное напряжение до 35В (LM317 способна работать с входным напряжением до 40В, но лучше оставить запас)
• Выходное напряжение 0,8В-37В (максимальное выходное напряжение зависит от тока, чем больше ток, тем меньше максимальное выходное напряжение)
• Ток до 8.5А (с транзистором TIP35C при максимальном входном напряжении 19,5В, а вообще зависит от выбранного транзистора и рассеиваемой на нем мощности, об этом более подробно будет описано дальше)
• Стабилизация выходного напряжения при изменении входного
• Стабилизация выходного напряжения при изменении тока нагрузки (по качеству стабилизации будет информация ниже)
• Отсутствие защиты от КЗ
• Отсутствие защиты по току

Микросхема управляет мощным биполярным транзистором VT1. Я для этой цели использовал, вышеупомянутый TIP35С. Эмиттер, коллектор и база также обозначены на схеме и на картинке в нижнем правом углу. Транзисторы TIP36C и TIP35С являются комплементарной парой, поэтому основные характеристики у них сходные: напряжение – 50В, ток коллектора – 25А (8-9А, для конкретно моих транзисторов, купленных на Али Экспресс), статический коэффициент передачи тока около 10.

По поводу подбора транзистора и рассеиваемой им мощности
Очень важно следить за мощностью, которую рассеивает транзистор. Оригинальные транзисторы в корпусах TO-247, ТО-218, ТО-3P и аналогичных по габаритам, могут максимально рассеивать до 70-100 Вт мощности (в зависимости от конкретной модели и экземпляра транзистора). Но лично я стараюсь нагружать транзисторы не максимально, чтобы продлить им жизнь, т.е. 60 Вт максимум, а лучше 40-50. Что касается транзисторов с Али Экспресс в вышеупомянутых корпусах, то лучше, чтобы максимальная рассеиваемая мощность не превышала 50-55 Вт. Т.е. при мощности больше 55 Вт они с вероятность 80% выйдут из строя. Токи для таких транзисторов не должны превышать 8-9А. Рассчитывается мощность, которую рассеивает транзистор по следующей формуле:

Как видно: чем больше мы закрываем наш транзистор, тем сильнее при этом уменьшается ток, и тем больше уменьшается выходное напряжение. В данном эксперименте максимальная мощность, рассеянная на транзисторе, не превысила 55 Ватт, что способен выдержать даже мой поддельный транзистор. Т.е. в вышеуказанном примере нашей нагрузке будет не хватать тока, но наш транзистор не выйдет из строя. Но если входное напряжение у нас будет больше, например 35В, то стабилизатор ток в 8,5А не выдержит при большой разнице между входным и выходным напряжением. В общем, для каждого режима работы транзистора нужно делать отдельный расчет рассеиваемой мощности, зная разницу между входным и выходным напряжением и реальный ток коллектора.

Продолжим рассмотрение схемы. Резисторы R1 (переменный) и R2 задают напряжение, которое наша схема будет стабилизировать. Резистор R2 можно взять номиналом от 200 до 300 Ом, мощность любая. Потенциометр R1 – номинал 4.7К-5К Ом. Для всех аналогичных схем на LM317 работает принцип: чем больше сопротивление резистора R1 относительно резистора R2, тем выше выходное напряжение.
Указанные выше компоненты составляют ядро схемы.

Хочу обратить внимание, что обратная связь снимается не с выхода (в данном случае с эмиттера) транзистора, а с его базы. Поэтому данная схема является не совсем полноценным стабилизаторам напряжения, скорее транзистор повторяет напряжение, стабилизированное микросхемой. В интернете есть ещё вот такой вариант схемы:

Здесь добавлен резистор R3, который как раз создает полноценную обратную связь. Но испытание данного варианта схемы выявило серьезный недостаток: при изменении тока нагрузки выходное напряжение заметно меняется. Например, при установленном выходном напряжении 12,6В и уменьшении тока нагрузки с 3,1А до 1,5А выходное напряжение увеличилось с 12,6В до 13,9В, т.е. на 1,3В. При аналогичной проверке предыдущей версии схемы эта разница была всего 0,2-0,3В. При увеличении тока нагрузки выходное напряжение наоборот уменьшается в обоих версиях схемы, но в первой версии схемы это не так выражено.

Я решил остановить свой выбор на первой версии схемы, т.к. там гораздо меньше риск зажарить нагрузку повышенным напряжением при уменьшении потребляемого тока.

Прокомментирую оставшиеся элементы схемы. Конденсатор C2 (керамический 0,1 мкФ) – припаивается параллельно переменному резистору и улучшает стабильность регулировки. Также для стабильности на базу транзистора добавлен конденсатор С6. Чтобы при разряде конденсатора C2 защитить вывод микросхемы LM317 ставится диод D2. Диод D1 защищает транзистор от обратного тока. Диод D3 служит для защиты схемы от ЭДС самоиндукции при питании электродвигателей. Конденсаторы C4 (электролитический 1000 мкФ) и C5 (керамический 1-10 мкФ) образуют входной фильтр, а конденсаторы C1 (электролитический 1000-3300 мкФ) и C3 (керамический 1-10 мкФ) образуют выходной фильтр. Электролитические конденсаторы нужно подбирать по напряжению с запасом, в идеале процентов на 40 больше примерно. Например, если входное напряжение будет 20В, то конденсатор С4 лучше брать 35В, а не 25В. Резистор R4 на 10к Ом (мощность любая) создает небольшую нагрузку для стабильности работы схемы на холостом ходу и помогает быстрее разрядить конденсаторы.

Читайте также:  Регулировка клапанов ford ranger

Процесс сборки:
Сначала попробовал различные варианты схемы, собрав их навесным монтажом.

В целом схема рабочая, но, как и прочие линейные стабилизаторы, обладает низким КПД и высоким нагревом. Особенности и характеристики данной схемы уже были описаны ранее. Для каких-то целей это критично, для каких-то нет, в любом случае собирать и тестировать данный модуль лично мне было интересно.

Всем спасибо за внимание, надеюсь, статья была для Вас полезной! Как всегда, готов ответить на вопросы и обсудить критику по существу в комментариях к данной статье.

Источник

LM317T схема включения

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА. Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.
Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.
Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

R1, Ом R2, Ом
LM317T схема включения 5v 120 360
LM317T схема включения 12v 240 2000

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Читайте также:  Ушм регулировка скорости вращения

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

30 thoughts on “ LM317T схема включения ”

Для lm317 datasheet от TI тут.
Кому сложно читать datasheet на английском, то можно посмотреть документацию на русском для отечественного аналога КР142ЕН12А.

Кроме мощных аналогов, есть и маломощные LM317L рассчитанные на ток не более 0,1 А, в корпусах SOIC-8 и TO-92.

Не забудьте установить микросхему на радиатор, надо помнить, что корпус не изолирован от вывода. Чем больше падение напряжения на микросхеме — разница между входным и выходным напряжением, тем меньше максимальная мощность.

Я бы уточнил, что от падения напряжения зависит «максимальная выходная мощность».
А максимальная мощность рассеиваемая на микросхеме зависит от корпуса и эффективности охлаждения.

Макс. мощность, рассеиваемая микросхемой — паспортная величина и не может быть превышена при любом охлаждении.

Оверклокеры с таким утверждением не соглясятся 🙂
Да я и не призываю «разгонять» стабилизаторы напряжения, даже наоборот: соблюдение рекомендаций производителя компонентов, важное условие надежной работы электронного устройста.
Если невозможно или слишком дорого обеспечивать надежное охлаждение, то нужно снижать планку максимально возможной мощности. А определить эту максимальную мощность можно зная максимально допустимую температуру кристалла, максимальную температуру окружающей среды и все тепловые сопротивления от кристалла до окружающей среды.

Есть паспортная максимальная мощность, которая кстати зависит от корпуса стабилизатора. А есть реальная максимальная мощность, которая получится при реальном максимальном напряжении и реальном максимальном токе. Так вот эта мощность нисколько не паспортная величина.

Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — не менее времени Максимальная мощность рассеивания по паспорту — это та, которую в состоянии рассеивать корпус устройства в нормальных условиях на протяжении длительного времени. Под НУ подразумевается температура в 20 цельсиев и влажность 85% при давлении 760 мм и отсутствие преград естественной циркуляции воздуха (плюс/минус 5%). Под длительным временем — минимальное время наработки на отказ, указанное в паспортных данных.

Тепловая и электрическая мощности — это немного разные параметры, хотя и взаимосвязанные.

Всегда относился к данной микросхеме, как к стабилизатору для начинающих, которые и запитывать от нее будут такие-же устройства.
Главную, на мой взгляд, мысль данной статьи: «…использовать в случае типовых напряжений, только когда…» — надо выделить жирным. Ее же, в таких случаях, не использовать вообще. Применять можно в малоточных регуляторах, где ни КПД, ни прецизионность стабилизации на динамическую нагрузку не важны.
Использование токовых усилителей, как на последней схеме, рентабельно применять только для фиксированных напряжений.

Любопытно вот, насколько критично включение танталовых конденсаторов на входе и выходе LM317, как то рекомендует даташит? Никогда не шунтировал ее входы/выходы чем-то лучшим чем самые обычные электролитические конденсаторы плюс (иногда) керамика. И ни разу не получил самовозбуждения. То же самое с LM7805 и LM7812 (и с их отечественными аналогами). Как только не изгалялся, даже подключал конденсаторы длинными проводами. Прокатывало, ни один стабилизатор не «завелся». Разработчики перестраховались или рекомендация относительно танталовых конденсаторов непосредственно возле выводов микросхемы касается каких-то особых условий эксплуатации?

Действительно, странноватая рекомендация… Особенно, если учесть, что стоимость танталовых конденсаторов, превышает стоимость самой микросхемы, как правило. 317-ю использовал редко, а вот 7805 и 7812 — десятками, и никогда проблем, обусловленных отсутствием редкоземельных и драгсодержащих элементов, не было. Присоединяюсь к удивлению, так как никаких особых условий использования, придумать не могу. Стабильный стабилизатор, вот и весь каламбур ) ЦП или ОЗУ по питанию подстраховать, это еще могу понять, а его… не могу.

Читайте также:  Регулировка фар нива шевроле рестайлинг

Как можно сделать схему, чтобы было два режима стабилизации тока. У меня к одной лампе подходит один плюс и два минуса. Нужно, чтобы по одному минусу было ярко, а по другому тускло.

Микросхема о которой ведется речь — регулируемый стабилизатор напряжения, не тока. Для вашей задачи подойдут обычные биполярные транзисторы используемые в качестве усилителей тока. Два корпуса. Их мощность должна соответствовать мощности вашей лампы, а напряжение — питающему напряжению. Ток, обеспечивающий желаемую тусклость задайте базовым резистором, можно подстроечным. И, желательно, в вопрос вкладывать побольше информации… лампа, а какая? Много их, разных.

Хочу собрать на LM317 зарядное устройство для NI-MH аккумалятора (одного). На входе — 5 вольт, на выходе — 1,5 вольт. Схему уже нашел. Но там 5 вольт берут с USB порта компьютера. А можно ли взять 5 вольт с зарядки от мобильного телефона? И, наверное, нужно выбрать такую зарядку, у которой выходной ток — не меньше, чем ток зарядки аккумулятора?

Конечно, вполне можно питать и от зарядки. Да, и ток источника должен быть не меньше тока потребителя.

Про ток зарядки от мобильника можете не беспокоиться — вряд ли вам удастся найти такую, ток которой был бы ниже, чем ток выдаваемый с порта USB. Как правило, он составляет 0,6-0,7 А. Этого вполне достаточно для зарядки не менее, чем 5-амперного аккумулятора. Если нужно больше, то зарядное просто не подойдет — это настолько стандартизированное изделие, что больше, чем на 0,75 А — вам вряд ли удастся найти.

Да есть же уже ЗУ с токами 1 и 2 А для зарядки смартфонов или планшетов, как раз многие из них уже с портом usb. Но тут уже стоит обратить внимание на качественный кабель, или спаять самому, стандартные китайские кабели такие токи редко способны передать

Вы немного путаете порт USB с его разъемом. Понимаете, USB, в первую очередь — Serial Bus, а уж во вторую — Universal. Вторая причина и послужила столь частому, но не совсем профильному использованию данного Разъема в различных блоках питания и зарядных устройствах, что не оснащает их, непосредственно Портом. А что касается кабелей USB, то они, по определению, должны соответствовать стандартам своего класса (1.1; 2.0; 3.0), а не тому, что вы подразумеваете под «китайским стандартом».

Частоту бы узнать максимальную, с которой эта микросхема работает. Если у меня идет коммутация импульсов с частотой 10 КГц, будет ли она держать ток каждого импульса в пределах значений, заданных резистором?
И как лучше её расположить на схема? Рис прилагаю.
https://sun9-1.userapi.com/c639822/v639822216/5396d/MX1daHe-rjs.jpg

Этот стабилизатор для работы на постоянном токе.
Если нужно получить пульсирующий ток, то правильнее будет «закорачивать» оптроном нагрузку.
Но применять в таком случае интегральный стабилизатор, я бы не стал. А собрал бы простенький стабилизатор на транзисторе и стабилитроне. Например такой: http://hardelectronics.ru/drajver-dlya-svetodiodov.html
Ну не предназначены интегральные стабилизаторы постоянного напряжения, для стабилизации пульсирующего тока.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Какой ток или мощность потребляет сама м-схема в режиме холостого хода без нагрузки?

Так и не понял, как регулировать выходное напряжение

не понял устройство, разъясни (25.04.19 )

Народ, Спс за такую статью, буду курить, может осилю. Собрал пока простые стабилизаторы напряжения в авто для светодиодов. Надо для мощных до 30-50 вт собрать с о стабилизацией и тока.

привет есть схема регулятора оборотов кулеров на lm317 где резистор между выводом adj и выходом 1килоом https://aliexpress.ru/item/32788208721.html в описании этого усстройства есть схема я такое устройство хотел применить для регулировки оборотов кулера 24V фена самодельной паяльной станции после изменения сопротивлений в схеме

привет есть схема регулятора оборотов вентиляторов на lm317 где резистор между выводом adj и выходом 1 кило ом https://aliexpress.ru/item/32788208721.html в описании этого устройства есть схема я такое устройство хотел применить для регулировки оборотов турбины 24V фена самодельной паяльной станции после изменения сопротивлений в схеме

Здравствуйте. В чём разница между LM7805 и LM7905

Вот схема с отрицательным управлением будет работать как полноценный лбп от0до29.5 Вольта а силу тока через задающий резистр от 5 ват и более

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Настройки и регулировки